Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility
نویسندگان
چکیده
3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype.
منابع مشابه
Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of...
متن کاملAn Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells
We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards i...
متن کاملReduced Expression of the ROCK Inhibitor Rnd3 Is Associated with Increased Invasiveness and Metastatic Potential in Mesenchymal Tumor Cells
BACKGROUND Mesenchymal and amoeboid movements are two important mechanisms adopted by cancer cells to invade the surrounding environment. Mesenchymal movement depends on extracellular matrix protease activity, amoeboid movement on the RhoA-dependent kinase ROCK. Cancer cells can switch from one mechanism to the other in response to different stimuli, limiting the efficacy of antimetastatic ther...
متن کاملFilGAP, a Rho/Rho-associated protein kinase–regulated GTPase-activating protein for Rac, controls tumor cell migration
Tumor cells exhibit two interconvertible modes of cell motility referred to as mesenchymal and amoeboid migration. Mesenchymal mode is characterized by elongated morphology that requires high GTPase Rac activation, whereas amoeboid mode is dependent on actomyosin contractility induced by Rho/Rho-associated protein kinase (ROCK) signaling. While elongated morphology is driven by Rac-induced prot...
متن کاملActive Gel Model of Amoeboid Cell Motility
We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the r...
متن کامل